[[413903]] This guide shows you how to use Linkerd and Flagger to automate canary deployments and A/B testing. Flagger Linkerd Traffic Split Prerequisites Flagger requires a Kubernetes cluster v1.16 or later and Linkerd 2.10 or later. Install Linkerd the Prometheus (part of Linkerd Viz): - linkerd install | kubectl apply -f -
- linkerd viz install | kubectl apply -f -
Install Flagger in the linkerd namespace: - kubectl apply -k github.com/fluxcd/flagger//kustomize/linkerd
Bootloader Flagger takes a Kubernetes deployment and optionally Horizontal Pod Autoscaling (HPA), and then creates a series of objects (Kubernetes Deployment, ClusterIP Service, and SMI Traffic Splitting). These objects expose the application to the mesh and drive Canary analysis and promotion. Create a test namespace and enable Linkerd proxy injection: - kubectl create ns test
- kubectl annotate namespace test linkerd.io/inject=enabled
Install a load testing service to generate traffic during canary analysis: - kubectl apply -k https://github.com/fluxcd/flagger//kustomize/tester?ref=main
Create a deployment and a horizontal pod autoscaler: - kubectl apply -k https://github.com/fluxcd/flagger//kustomize/podinfo?ref=main
Create a Canary custom resource for the podinfo deployment: - apiVersion: flagger.app/v1beta1
- kind: Canary
- metadata:
- name : podinfo
- namespace: test
- spec:
- # deployment reference
- targetRef:
- apiVersion: apps/v1
- kind: Deployment
- name : podinfo
- # HPA reference (optional)
- autoscalerRef:
- apiVersion: autoscaling/v2beta2
- kind: HorizontalPodAutoscaler
- name : podinfo
- # the maximum time in seconds for the canary deployment
- # to make progress before it is rollback ( default 600s)
- progressDeadlineSeconds: 60
- service:
- # ClusterIP port number
- port: 9898
- # container port number or name (optional)
- targetPort: 9898
- analysis:
- # schedule interval ( default 60s)
- interval: 30s
- # max number of failed metric checks before rollback
- threshold: 5
- # max traffic percentage routed to canary
- # percentage (0-100)
- maxWeight: 50
- # canary increment step
- # percentage (0-100)
- stepWeight: 5
- # Linkerd Prometheus checks
- metrics:
- - name : request-success-rate
- # minimum req success rate (non 5xx responses)
- # percentage (0-100)
- thresholdRange:
- min : 99
- interval: 1m
- - name : request-duration
- # maximum req duration P99
- # milliseconds
- thresholdRange:
- max : 500
- interval: 30s
- # testing (optional)
- webhooks:
- - name : acceptance-test
- type: pre-rollout
- url: http://flagger-loadtester.test/
- timeout: 30s
- metadata:
- type: bash
- cmd: "curl -sd 'test' http://podinfo-canary.test:9898/token | grep token"
- - name : load -test
- type: rollout
- url: http://flagger-loadtester.test/
- metadata:
- cmd: "hey -z 2m -q 10 -c 2 http://podinfo-canary.test:9898/"
Save the above resources as podinfo-canary.yaml and apply: - kubectl apply -f ./podinfo-canary.yaml
When the canary analysis starts, Flagger will call the pre-rollout webhooks before routing traffic to the canary. The canary analysis will run for five minutes while validating HTTP metrics and rollout hooks every half minute. After a few seconds, Flager will create the canary object: - # applied
- deployment.apps/podinfo
- horizontalpodautoscaler.autoscaling/podinfo
- ingresses.extensions/podinfo
- canary.flagger.app/podinfo
-
- # generated
- deployment.apps/podinfo- primary
- horizontalpodautoscaler.autoscaling/podinfo- primary
- service/podinfo
- service/podinfo-canary
- service/podinfo- primary
- trafficsplits.split.smi-spec.io/podinfo
After boostrap, the podinfo deployment will be scaled to zero and traffic to podinfo.test will be routed to the primary pod. During canary analysis, the canary pod can be directly located using the podinfo-canary.test address. Automatic canary advancement Flagger implements a control loop that gradually shifts traffic to the canary while measuring key performance indicators such as HTTP request success rate, average request duration, and Pod health. Based on the analysis of the KPIs, the canary is promoted or aborted, and the analysis results are published to Slack. Flagger Canary Phase Trigger a canary deployment by updating the container image: - kubectl -n test set image deployment/podinfo \
- podinfod=stefanprodan/podinfo:3.1.1
Flagger detects that the deployment revision has changed and starts a new deployment: - kubectl -n test describe canary/podinfo
-
- Status:
- Canary Weight: 0
- Failed Checks: 0
- Phase: Succeeded
- Events:
- New revision detected! Scaling up podinfo.test
- Waiting for podinfo.test rollout to finish: 0 of 1 updated replicas are available
- Pre-rollout check acceptance-test passed
- Advance podinfo.test canary weight 5
- Advance podinfo.test canary weight 10
- Advance podinfo.test canary weight 15
- Advance podinfo.test canary weight 20
- Advance podinfo.test canary weight 25
- Waiting for podinfo.test rollout to finish: 1 of 2 updated replicas are available
- Advance podinfo.test canary weight 30
- Advance podinfo.test canary weight 35
- Advance podinfo.test canary weight 40
- Advance podinfo.test canary weight 45
- Advance podinfo.test canary weight 50
- Copying podinfo.test template spec to podinfo- primary .test
- Waiting for podinfo- primary .test rollout to finish: 1 of 2 updated replicas are available
- Promotion completed! Scaling down podinfo.test
Note that if you apply new changes to your deployment during canary analysis, Flagger will restart the analysis. A canary deployment is triggered by a change to any of the following objects: - Deployment PodSpec (container image, command, ports, environment, resources, etc.)
- ConfigMaps mounted as volumes or mapped to environment variables
- Secrets mounted as volumes or mapped to environment variables
You can monitor all canaries via: - watch kubectl get canaries
-
- NAMESPACE NAME STATUS WEIGHT LASTTRANSITIONTIME
- test podinfo Progressing 15 2019-06-30T14:05:07Z
- prod frontend Succeeded 0 2019-06-30T16:15:07Z
- prod backend Failed 0 2019-06-30T17:05:07Z
Automatic rollback During canary analysis, you can generate HTTP 500 errors and high latency to test whether Flagger pauses and rolls back the faulty version. Trigger another canary deployment: - kubectl -n test set image deployment/podinfo \
- podinfod=stefanprodan/podinfo:3.1.2
Execute the load tester pod using the following command: - kubectl -n test exec -it flagger-loadtester-xx-xx sh
Generates an HTTP 500 error: - watch -n 1 curl http://podinfo-canary.test:9898/status/500
Generate Delay: - watch -n 1 curl http://podinfo-canary.test:9898/delay/1
When the number of failed checks reaches the canary analysis threshold, traffic is routed back to the primary server, the canary is scaled to zero, and the rollout is marked as failed. - kubectl -n test describe canary/podinfo
-
- Status:
- Canary Weight: 0
- Failed Checks: 10
- Phase: Failed
- Events:
- Starting canary analysis for podinfo.test
- Pre-rollout check acceptance-test passed
- Advance podinfo.test canary weight 5
- Advance podinfo.test canary weight 10
- Advance podinfo.test canary weight 15
- Halt podinfo.test advancement success rate 69.17% < 99%
- Halt podinfo.test advancement success rate 61.39% < 99%
- Halt podinfo.test advancement success rate 55.06% < 99%
- Halt podinfo.test advancement request duration 1.20s > 0.5s
- Halt podinfo.test advancement request duration 1.45s > 0.5s
- Rolling back podinfo.test failed checks threshold reached 5
- Canary failed! Scaling down podinfo.test
Custom Indicators Canary analysis can be extended via Prometheus queries. Let's define a check for not finding errors. Edit canary analysis and add the following indicator: - analysis:
- metrics:
- - name : "404s percentage"
- threshold: 3
- query: |
- 100 - sum (
- rate(
- response_total{
- namespace= "test" ,
- deployment= "podinfo" ,
- status_code!= "404" ,
- direction= "inbound"
- }[1m]
- )
- )
- /
- sum (
- rate(
- response_total{
- namespace= "test" ,
- deployment= "podinfo" ,
- direction= "inbound"
- }[1m]
- )
- )
- * 100
The above configuration verifies the canary version by checking if the HTTP 404 req/sec percentage is below 3% of the total traffic. If the 404s rate reaches the 3% threshold, the analysis is aborted and the canary is marked as failed. Trigger a canary deployment by updating the container image: - kubectl -n test set image deployment/podinfo \
- podinfod=stefanprodan/podinfo:3.1.3
Generates a 404: - watch -n 1 curl http://podinfo-canary:9898/status/404
Monitor Flagger logs: - kubectl -n linkerd logs deployment/flagger -f | jq .msg
-
- Starting canary deployment for podinfo.test
- Pre-rollout check acceptance-test passed
- Advance podinfo.test canary weight 5
- Halt podinfo.test advancement 404s percentage 6.20 > 3
- Halt podinfo.test advancement 404s percentage 6.45 > 3
- Halt podinfo.test advancement 404s percentage 7.22 > 3
- Halt podinfo.test advancement 404s percentage 6.50 > 3
- Halt podinfo.test advancement 404s percentage 6.34 > 3
- Rolling back podinfo.test failed checks threshold reached 5
- Canary failed! Scaling down podinfo.test
If you have Slack configured, Flagger will send a notification stating why the canary failed. Linkerd Ingress There are two ingress controllers that are compatible with Flagger and Linkerd: NGINX and Gloo. Install NGINX: - helm upgrade -i nginx-ingress stable/nginx-ingress \
-
Create an ingress definition for podinfo that rewrites incoming headers to the internal service name (required for Linkerd): - apiVersion: extensions/v1beta1
- kind: Ingress
- metadata:
- name : podinfo
- namespace: test
- labels:
- app:podinfo
- annotations:
- kubernetes.io/ingress.class: "nginx"
- nginx.ingress.kubernetes.io/configuration-snippet: |
- proxy_set_header l5d-dst-override $service_name.$namespace.svc.cluster. local :9898;
- proxy_hide_header l5d-remote-ip;
- proxy_hide_header l5d-server-id;
- spec:
- rules:
- - host: app.example.com
- http:
- paths:
- - backend:
- serviceName:podinfo
- servicePort: 9898
When using an ingress controller, Linkerd traffic splitting does not apply to incoming traffic because NGINX runs outside the mesh. To run canary analysis on the frontend application, Flagger creates a shadow ingress and sets NGINX-specific annotations. A/B Testing In addition to weighted routing, Flagger can also be configured to route traffic to canaries based on HTTP match conditions. In an A/B testing scenario, you will use HTTP headers or cookies to target your specific user base. This is particularly useful for front-end applications that require session affinity. Flagger Linkerd Ingress Edit the podinfo canary analysis, set the provider to nginx, add the ingress reference, remove the max/step weights and add match conditions and iterations: - apiVersion: flagger.app/v1beta1
- kind: Canary
- metadata:
- name : podinfo
- namespace: test
- spec:
- # ingress reference
- provider: nginx
- ingressRef:
- apiVersion: extensions/v1beta1
- kind: Ingress
- name : podinfo
- targetRef:
- apiVersion: apps/v1
- kind: Deployment
- name : podinfo
- autoscalerRef:
- apiVersion: autoscaling/v2beta2
- kind: HorizontalPodAutoscaler
- name : podinfo
- service:
- # container port
- port: 9898
- analysis:
- interval: 1m
- threshold: 10
- iterations: 10
- match:
- # curl -H 'X-Canary: always' http://app.example.com
- - headers:
- x-canary:
- exact: "always"
- # curl -b 'canary=always' http://app.example.com
- - headers:
- Cookies:
- exact: "canary"
- # Linkerd Prometheus checks
- metrics:
- - name : request-success-rate
- thresholdRange:
- min : 99
- interval: 1m
- - name : request-duration
- thresholdRange:
- max : 500
- interval: 30s
- webhooks:
- - name : acceptance-test
- type: pre-rollout
- url: http://flagger-loadtester.test/
- timeout: 30s
- metadata:
- type: bash
- cmd: "curl -sd 'test' http://podinfo-canary:9898/token | grep token"
- - name : load -test
- type: rollout
- url: http://flagger-loadtester.test/
- metadata:
- cmd: "hey -z 2m -q 10 -c 2 -H 'Cookie: canary=always' http://app.example.com"
The above configuration will run a 10 minute analysis targeting users who have the canary cookie set to always or who call the service with the X-Canary: always header. Note that the load test now targets an external address and uses a canary cookie. Trigger a canary deployment by updating the container image: - kubectl -n test set image deployment/podinfo \
- podinfod=stefanprodan/podinfo:3.1.4
Flagger detects that the deployment revision has changed and starts an A/B test: - kubectl -n test describe canary/podinfo
-
- Events:
- Starting canary deployment for podinfo.test
- Pre-rollout check acceptance-test passed
- Advance podinfo.test canary iteration 1/10
- Advance podinfo.test canary iteration 2/10
- Advance podinfo.test canary iteration 3/10
- Advance podinfo.test canary iteration 4/10
- Advance podinfo.test canary iteration 5/10
- Advance podinfo.test canary iteration 6/10
- Advance podinfo.test canary iteration 7/10
- Advance podinfo.test canary iteration 8/10
- Advance podinfo.test canary iteration 9/10
- Advance podinfo.test canary iteration 10/10
- Copying podinfo.test template spec to podinfo- primary .test
- Waiting for podinfo- primary .test rollout to finish: 1 of 2 updated replicas are available
- Promotion completed! Scaling down podinfo.test
|